From gradient damage laws to Griffith’s theory of crack propagation
نویسندگان
چکیده
This paper is devoted to the comparison of the evolution of damage governed by a gradient damage model with the evolution of a crack predicted by Griffith’s law. The analysis is made in a two-dimensional setting, assuming that damage is concentrated inside thin bands whose width is proportional to the internal length of the material. Taking advantage of the variational formulation based on the three principles of irreversibility, stability and energy balance, one introduces a generalized Rice path integral which contains terms involving the gradient of damage. Assuming that the internal length of the material is small by comparison with the dimension of the body, a separation of scales is achieved. Owing to the energy balance and the stability condition, one first proves some properties of this path integral with respect to the path. Then, one shows that the evolution of the damage zone is governed by Griffith’s law, the dissipated surface energy being given by the energy dissipated in the damage process zone.
منابع مشابه
Crack Tip Equation of Motion in Dynamic Gradient Damage Models
We propose in this contribution to investigate the link between the dynamic gradient damage model and the classical Griffith’s theory of dynamic fracture during the crack propagation phase. To achieve this main objective, we first rigorously reformulate two-dimensional linear elastic dynamic fracture problems using variational methods and shape derivative techniques. The classical equation of m...
متن کاملNumerical investigation of dynamic brittle fracture via gradient damage models
Background: Gradient damage models can be acknowledged as a unified framework of dynamic brittle fracture. As a phase-field approach to fracture, they are gaining popularity over the last few years in the computational mechanics community. This paper concentrates on a better understanding of these models. We will highlight their properties during the initiation and propagation phases of defect ...
متن کاملQuasi-Static Crack Propagation by Griffith’s Criterion
We consider the propagation of a crack in a brittle material along a prescribed crack path and define a quasi-static evolution by means of stationary points of the free energy. We show that this evolution satisfies Griffith’s criterion in a suitable form which takes into account both stable and unstable propagation, as well as an energy balance formula which accounts for dissipation in the unst...
متن کاملWave Propagation in Rectangular Nanoplates Based on a New Strain Gradient Elasticity Theory with Considering in-Plane Magnetic Field
In this paper, on the basis of a new strain gradient elasticity theory, wave propagation in rectangular nanoplates by considering in-plane magnetic field is studied. This strain gradient theory has two gradient parameters and has the ability to compare with the nonlocal elasticity theory. From the best knowledge of author, it is the first time that this theory is used for investigating wave pro...
متن کاملPiecewise Rigidity
In this paper we provide a Liouville type theorem in the framework of fracture mechanics, and more precisely in the theory of SBV deformations for cracked bodies. We prove the following rigidity result: if u ∈ SBV (Ω, RN ) is a deformation of Ω whose associated crack Ju has finite energy in the sense of Griffith’s theory (i.e., HN−1(Ju) <∞), and whose approximate gradient ∇u is almost everywher...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017